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The Problem

# We collect a set of scans (high-dimensional
multivariate image vectors) with an unknown
spatio-temporal structure.

# Each scan is acquired under one of a finite set of
experimental design conditions or brain states.

# PROBLEM: How to determine the spatio-
temporal structure that “best” describes the
variation among these experimental brain
states?
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The Philosophy

“I believe in ignorance based methods because
humans have a lot of ignorance and we should
play to our strong suit.”

Eric Lander
Whitehead Institute, M.I.T.

The field of statistical learning or machine learning provides a
coherent scientific approach for this viewpoint!
See: Machine Learning for Science: State of the art and future prospects.
E. Mjolsness & D. DeCoste.  Science, 293:2051-2055, September, 2001

Presentation Overview

# AIMS.  Optimize functional neuroimaging results by
measuring internal result consistency and bias-variance
tradeoffs without relying on: 
< Prior neuroscientific expectations, i.e., the neuroscientific-bias problem;
< Inferential tests based on Maximum Likelihood (ML) parameter estimates.

# METHODS.  NPAIRS Quality Metrics for Multiple PET Tasks:
< Prediction error in a flexible, multivariate, cross-validation framework;
< Statistical parametric map (SPM) reproducibility;
< Provide a data-driven alternative to ROC curves.

# RESULTS.  BOLD-fMRI, within-subject, run-to-run comparisons as a
function of preprocessing:

< Exploratory canonical variates analysis (CVA) to establish signal subspace;
< Prediction vs.  reproducibility plots as f(model complexity);
< Preprocessing optimization for group vs. individual subjects.

# CONCLUSIONS.
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Why Test Internal Result Consistency?
(The Neuroscientific Bias Problem)

# Patterns of functional activation obtained from neuro-imaging studies
reflect interactions between choices of:

< Research question and activation task;

< Experimental design parameters;

< A complex series of data-analysis-chain choices including:

– Data acquisition and post-acquisition preprocessing;

– Data-analysis model selection and tunning model complexity.

# Generation of a plausible result is often taken as
justification for the choices made, leading to a systematic
bias in the field towards prevailing neuroscientific
expectations.

Are Maximum Likelihood
Parameter Estimates Enough?

# Perhaps asymptotically, but:
< ML focuses on asymptotically unbiased, minimum-variance

estimates;
< This ignores the bias-variance tradeoffs inherent in parameter

estimates from finite samples;
< We have no idea what large . asymptotic means in functional

neuroimaging;
< There are better signal detectors than ML estimates that are

asymptotically-biased but have smaller parameter variance;
< In real, finite data sets there is a bias-variance tradeoff to

be considered, even for the t-test!
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Is the t-test efficient?
ROC Simulations

(See: Lukic AS, Wernick MN, Strother SC. An evaluation of methods for detecting brain
activations from PET or fMRI images. A.I. Medicine (Invited paper, in press))

The NPAIRS Framework

# Uses split-half resampling to provide:
< measurements of prediction (generalization) error and SPM

pattern reproducibility (reliability);
< uncorrelated signal and noise SPMs from any data analysis model;
< a reproducible SPM (rSPM) on a common statistical Z-score scale;
< implicitly includes random observation effects, e.g., subjects, runs;
< a measure of individual observation influence.

<  N       Nonparametric 
<  P        Prediction
<  A       Activation
<   I         Influence
<  R        Reproducibility
<  S        reSampling
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The NPAIRS Framework

# The development and application of the NPAIRS
framework is described in the following papers:

< Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Siditis J,
Frutiger S, Muley S, LaConte S, Rottenberg D. The quantitative
evaluation of functional neuroimaging experiments: The NPAIRS data
analysis framework. Neuroimage (in press).

< Kjems U, Hansen LK, Anderson J, Frutiger SA, Sidtis JJ, Rottenberg D,
Strother SC. The quantitative evaluation of functional neuroimaging
experiments: Mutual information learning curves. Neuroimage (in
press). 

< LaConte S, Anderson J, Muley S, Frutiger S, Hansen LK, Yacoub E,
Xiaoping H, Rottenberg D, Ashe J, Strother SC. Evaluating
preprocessing choices in single-subject BOLD-fMRI studies using data-
driven performance metrics. Neuroimage (submitted).

NPAIRS: Prediction/Crossvalidation reSampling

Prediction Metrics in Functional Neuro-
imaging Studies.
Morch N, Hansen LK, Strother SC, Svarer C,
Rottenberg DA, Lautrup B, Savoy R, Paulson OB.
Nonlinear versus linear models in functional
neuroimaging: Learning curves and generalization
crossover. In: Duncan J, Gindi G, eds: Lecture Notes
in Computer Science 1230: Information Processing in
Medical Imaging. Springer-Verlag, 1997, 259-270.

Hansen LK, Larsen J, Nielsen FA, Strother SC,
Rostrup E, Savoy R, Lange N, Sidtis J, Svarer C,
Paulson OB. Generalizable patterns in neuroimaging:
How many principal components?. Neuroimage,
9:534-544, 1999.

Kustra R, Strother SC. Penalized discriminant
analysis of [15O]water PET brain images with
prediction error selection of smoothing and
regularization hyperparameters. IEEE Trans Med Img
20:376-387, 2001.
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A Flexible Multivariate Framework
for NPAIRS

# Canonical Variates Analysis (Mardia et al., 1979):
< Closely related to Linear Discriminant Analysis, Canonical

Correlation Analysis and Partial Least Squares;

< Maximises the multivariate signal-to-noise ratio of (Between-
Group)/(Pooled Within-Group) covariance;

< Provides approximate correction for random subject effects;

< Efficiently detects mean AND spatial interaction signals;

< Easily vary model complexity.
– utilizing experimental state-driven or data-driven group structures;

– preprocessing with different types/numbers of basis functions.

Experimental- vs.  Data-Driven Analysis
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Predicting the Brain State with CVA

# Identifies the regions needed to explain systematic variations between
scans by linearly combining with a new scan to predict the experimental
state of the brain, i.e. the group of the new test scan.

# The probability of predicting the group, g, of a new scan

# Is a weighted, multivariate Gaussian distribution

# Dependent on the Euclidean distance 

< Between the training group mean and the new scan

< Projected onto a set of non-orthogonal canonical eigenimages

< With flexibly choosen type and number of basis functions

NPAIRS: Split-half reSampling to Obtain
Activation-Pattern Reproducibility Metrics

For 8 subjects {S1, ..., S8} each of 35 splits creates two groups of 4
subjects from which any model produces two independent SPMs for
comparison.
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NPAIRS: Reproducibility Metrics in
Functional Neuroimaging Studies

Strother SC, Lange N, Anderson JR, Schaper KA, Rehm K, Hansen LK, Rottenberg DA.
Activation pattern reproducibility: Measuring the effects of group size and data analysis models.
Hum Brain Mapp, 5:312-316, 1997. 

Strother SC, Rehm K, Lange N, Anderson JR, Schaper KA, Hansen LK, Rottenberg DA.
Measuring activation pattern reproducibility using resampling techniques. In: Quantitative
functional brain imaging with Positron Emission Tomography. (Carson RE, Daube-Witherspoon
ME, Herscovitch P, eds.), Academic Press, San Diego, pp. 241-246, 1998.

Tegeler C, Strother SC, Anderson JR, Kim S-G. Reproducibility of BOLD-based functional MRI
obtained at 4T. Hum Brain Mapp, 7:267-283, 1999.

Frutiger S, Strother SC, Anderson JR, Sidtis JJ, Arnold JB, Rottenberg DA. Multivariate
predictive relationship between kinematic and functional activation patterns in a PET study of
visuomotor learning. Neuroimage 12:515-527, 2000.

Muley SA, Strother SC, Ashe J, Frutiger SA, Anderson JR, Sidtis JJ, Rottenberg DA. Effects of
changes in experimental design on PET studies of isometric force. Neuroimage 13:185-195,
2001.

Shaw M, Strother SC, McFarlane AC, Morris P, Anderson J, Clark CR, Egan GF. Abnormal
functional connectivity in post-traumatic stress disorder. Neuroimage (in press).

NPAIRS: Z-Scored, Reproducing SPM (rSPM(Z))
for Independent, NonReproducing SPMs

PCA of scatter-plot correlation matrix:
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NPAIRS: Z-Scored, Reproducing SPM (rSPM(Z))
for Independent, Reproducing SPMs

PCA of scatter-plot correlation matrix:

Twelve PET Data Sets
#12 PET data-analysis sets (8-subjects/set) performing 11 tasks:
< 3 Speech tasks: 

N Syllable production, SP-PA
N Lip closure, SP-LC
N Sustained phonation, SP-PH

< 2 Figure tracing tasks: 
N Standard tracing, TR
N Standard tracing followed by mirrored tracing, MT

< 3 Finger movement tasks with auditory pacing:
N Finger opposition at 1 Hz, FO
N Finger tapping, low amplitude, parametrically varied 0-3 Hz, FT-LO
N Finger tapping, high amplitude, parametrically varied 0-3 Hz, FT-HI

< 2 Parametricaly varied static force tasks with visual feedback:
N Alternating control-force design, SF2
N Randomized block design, SF3

< 1 Target interception (circular moving target within an annular path):
N Contrast reaction type (button push vs. joystick) independent of speed, TG-RE
N Contrast speed (fast vs. slow) independent of reaction type, TG-SP
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NPAIRS: Reproducibility Histograms for
Twelve PET Tasks 

(See: Strother SC, Anderson J, Hansen LK, Kjems U, Kustra R, Siditis J, Frutiger S, Muley S,
LaConte S, Rottenberg D. The quantitative evaluation of functional neuroimaging experiments: The
NPAIRS data analysis framework. Neuroimage (in press))

Within-Subject fMRI Comparisons
(LaConte et al., Neuroimage, 2002 (submitted))

< Sixteen subjects with 2 runs/subject 

< Acquisition:
– Whole-brain, 1.5T BOLD-EPI;
– 30 slices = 1 whole-brain scan;
– 1 oblique slice = 3.44 x 3.44 x 5 mm3;
– TR/TE = 4000 ms/70 ms

< Experimental Design:
– Parametric static isometric force (sf);
– Run: [5 x (b1, ... , b11, sf#1, ... ,  sf#11), b1, ... , b11] = 121 scans;

N sf1=200g, sf2=400g, sf3=600g, sf4=800g, sf5=1000g.

< Analyzed with PCA and Penalized CVA (Kustra &
Strother, IEEE TMI, 20:376-387, 2001):
– 22-group and 2-group analyses;
– Dropped initial non-equilibrium and state-transition scans.
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PCA Preprocessing for Two-Run Static Force

fMRI Static Force: Exploratory CVA for
Three Subjects
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Preprocessing for Two-Run Static Force

<< All runs/subject(s) passed initial quality control:
– movement (AIR 3) < 1 voxel;
– no artifacts in functional or structural scans;
– no obvious outliers in PCA of centered data matrix.

<<  Within-Subject Alignment:
– None;
– Across runs using AIR 3.08 to 1st scan of run one.

<< Temporal Detrending using GLM Cosine Basis (a la SPM):
– DT0: None;
– DTL: 0.5-cosine/run;
– DTH: 0.5, 1.0, 1.5 and 2.0 cosines/run.

<< Spatial Smoothing with 2D Gaussian:
– GS0: None;
– GSL: FWHM = 1.5 voxels = 0.52 mm;
– GSH: FWHM = 6 voxels = 21 mm.

Multi-Subject Prediction Accuracy vs Reproducibility

1. A Classic Bias-Variance Tradeoff.
As model complexity increases
(#PCs 10 6 100) prediction of design
matrix’s class labels improves and
reproducibility (i.e., activation SNR)
decreases.

2.  Optimizing Performance.
Like an ROC plot there is a single
point, (1, 1), on this prediction vs.
reproducibility plot with the best
performance; at this location the
model has perfectly predicted the
design matrix while extracting an 4
SNR.
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Single-Subject Prediction Accuracy vs. Reproducibility

CVA of Model Performance vs.  Analysis Chain

Mean Prediction
            vs.
Reproducibility
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The NPAIRS Framework
#Provides a framework for determining the spatio-temporal

structure that “best” describes the variation among experimental
brain states.

#Provides a non-parametric approach for maximizing the SNR of
spatial activation patterns (i.e., their reproducibility) while
allowing for random effects and controlling for model
generalization ability.

#Provides a data-driven alternative to “true simulations” for ROC
curves.

#May be readily applied within and between subjects, laboratories,
modalities and tasks.

#Benefits are:
< “semi-orthogonal” scales for quantitatively ranking experimental and methodological

choices within and between different classes of models.
< experimental and methodological optimization is no longer strongly dependent on

particular data analytic model assumptions.
< replaces result validity based only on inferential p-values and neuroscientific

expectations.


